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19.1. Introduction
A brake is a device by means of which artificial

frictional resistance is applied to a moving machine member,
in order to retard or stop the motion of a machine. In the process
of performing this function, the brake absorbs either kinetic
energy of the moving member or potential energy given up by
objects being lowered by hoists, elevators etc. The energy
absorbed by brakes is dissipated in the form of heat. This heat
is dissipated in the surrounding air (or water which is circulated
through the passages in the brake drum) so that excessive
heating of the brake lining does not take place. The capacity of
a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,
2. The coefficient of friction between the braking

surfaces,
3. The peripheral velocity of the brake drum,
4. The projected area of the friction surfaces, and
5. The ability of the brake to dissipate heat equivalent

to the energy being absorbed.
The major functional difference between a clutch and

a brake is that a clutch is used to keep the driving and driven
member moving together, whereas brakes are used to stop a
moving member or to control its speed.

19.2. Materials for Brake Lining
The material used for the brake lining should have the

following characteristics :
732
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1. It should have high coefficient of friction with minimum fading. In other words, the coeffi-

cient of friction should remain constant with change in temperature.
2. It should have low wear rate.
3. It should have high heat resistance.
4. It should have high heat dissipation capacity.
5. It should have adequate mechanical strength.
6. It should not be affected by moisture and oil.

The materials commonly used for facing or lining of brakes and their properties are shown in
the following table.

Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.

Coefficient of friction (µ) Allowable
Material for braking lining  pressure ( p )

Dry Greasy Lubricated N/mm2

Cast iron on cast iron 0.15 – 0.2 0.06 – 0.10 0.05 – 0.10 1.0 – 1.75
Bronze on cast iron – 0.05 – 0.10 0.05 – 0.10 0.56 – 0.84

Steel on cast iron 0.20 – 0.30 0.07 – 0.12 0.06 – 0.10 0.84 – 1.40

Wood on cast iron 0.20 – 0.35 0.08 – 0.12 – 0.40 – 0.62

Fibre on metal – 0.10 – 0.20 – 0.07 – 0.28

Cork on metal 0.35 0.25 – 0.30 0.22 – 0.25 0.05 – 0.10

Leather on metal 0.30 – 0.5 0.15 – 0.20 0.12 – 0.15 0.07 – 0.28

Wire asbestos on metal 0.35 – 0.5 0.25 – 0.30 0.20 – 0.25 0.20 – 0.55

Asbestos blocks on metal 0.40 – 0.48 0.25 – 0.30 – 0.28 – 1.1

Asbestos on metal (Short – – 0.20 – 0.25 1.4 – 2.1

action)

Metal on cast iron (Short – – 0.05 – 0.10 1.4 – 2.1

action)

19.3.19.3.19.3.19.3.19.3. Types of BrakesTypes of BrakesTypes of BrakesTypes of BrakesTypes of Brakes

The brakes, according to the means used for transforming the energy by the braking  elements,
are classified as :

1.  Hydraulic brakes e.g. pumps or hydrodynamic brake
and fluid agitator,

2.  Electric brakes e.g. generators and eddy current
brakes, and

3.  Mechanical brakes.
The hydraulic and electric brakes cannot bring the

member to rest and are mostly used where large amounts of
energy are to be transformed while the brake is retarding the
load such as in laboratory dynamometers, high way trucks and
electric locomotives. These brakes are also used for retarding
or controlling the speed of a vehicle for down-hill travel.

The mechanical brakes, according to the direction of
acting force, may be divided into the following two groups :

(a) Radial brakes. In these brakes, the force acting on
the brake drum is in radial direction. The radial brakes may be Simple bicycle brakes.
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sub-divided into external brakes and internal brakes. According to the shape of the friction ele-
ments, these brakes may be block or shoe brakes and band brakes.

(b) Axial brakes. In these brakes, the force acting on the brake drum is in axial direction. The
axial brakes may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches.

Since we are concerned with only mechanical brakes, therefore, these are discussed, in detail,
in the following pages.

19.4. Single Block or Shoe Brake
A single block or shoe brake is shown in Fig. 19.1. It consists of a block or shoe which is

pressed against the rim of a revolving brake wheel drum. The block is made of a softer material than
the rim of the wheel. This type of a brake is commonly used on railway trains and tram cars. The
friction between the block and the wheel causes a tangential braking force to act on the wheel, which
retard the rotation of the wheel. The block is pressed against the wheel by a force applied to one end
of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other end of the lever is
pivoted on a fixed fulcrum O.

 (a) Clockwise rotation of brake wheel                             (b) Anticlockwise rotation of brake wheel.
Fig. 19.1. Single block brake. Line of action of tangential force passes through the fulcrum of the lever.

Let             P = Force applied at the end of the lever,
          RN= Normal force pressing the brake block on the wheel,
              r = Radius of the wheel,
          2θ = Angle of contact surface of the block,
           µ = Coefficient of friction, and
             Ft = Tangential braking force or the frictional force acting at the contact

      surface of the block and the wheel.
If the angle of contact is less than 60°, then it may

be assumed that the normal pressure between the block and
the wheel is uniform. In such cases, tangential braking force
on the wheel,

            Ft = µ.RN  ...(i)
and the braking torque,   TB = Ft.r = µ.RN.r  ... (ii)

Let us now consider the following three cases :
Case 1. When the line of action of tangential brak-

ing force (Ft ) passes through the fulcrum O of the lever,
and the brake wheel rotates clockwise as shown in Fig. 19.1
(a), then for equilibrium, taking moments about the fulcrum
O, we have

  NR x P l× = ×  or N
P l

R
x

×=

∴  Braking torque,

                       B N
. . . .

. .
P l P l r

T R r r
x x

µ= µ = µ × × =

When brakes are on, the pads grip the
wheel rim from either side, friction
between the pads and the rim converts
the cycle's kinetic energy into heat as
they reduce its speed.
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It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. 19.1 (b),

then the braking torque is same, i.e.

          B N
. . .

. .
P l r

T R r
x

µ= µ =

Case 2. When the line of action of the tangential braking force (Ft ) passes through a distance
‘a’ below the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.2 (a), then for
equilibrium, taking moments about the fulcrum O,

      RN × x + Ft × a = P.l  or   RN × x + µ RN × a = P.l     or    RN = 
.

.

P l

x a+ µ

and braking torque,       B N
. . .

.
.

p l r
T R r

x a

µ= µ =
+ µ

(a)  Clockwise rotation of brake wheel.       (b) Anticlockwise rotation of brake wheel.
Fig. 19.2. Single block brake. Line of action of Ft  passes below the fulcrum.

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium,
         RN.x = P.l + Ft.a = P.l + µ.RN.a ...(i)

or          RN (x – µ.a) = P.l    or RN = 
.

.

P l

x a− µ

and braking torque,        B N
. . .

. .
.

P l r
T R r

x a

µ= µ =
− µ

Case 3. When the line of action of the tangential braking force (Ft ) passes through a distance
‘a’ above the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for
equilibrium, taking moments about the fulcrum O, we have

         RN.x = P.l + Ft . a = P.l + µ.RN.a . . . (ii)

or           RN (x – µ.a) = P.l         or            RN = 
.

.

P l

x a− µ

(a) Clockwise rotation of brake wheel.                   (b) Anticlockwise rotation of brake wheel.

Fig. 19.3. Single block brake. Line of action of Ft passes above the fulcrum.

and braking torque,       TB = µ.RN.r = 
. . .

.

P l r

x a

µ
− µ
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When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then for equilibrium,
taking moments about the fulcrum O, we have

    RN × x + Ft × a = P.l     or     RN × x + µ.RN × a = P.l    or    RN = 
.

.

P l

x a+ µ

and braking torque,       TB = µ.RN.r = 
. . .

.

P l r

x a

µ
+ µ

Notes : 1. From above we see that when the brake wheel rotates anticlockwise in case 2 [Fig. 19.2 (b)] and when
it rotates clockwise in case 3 [Fig. 19.3 (a)], the equations (i) and (ii) are same, i.e.

    RN × x = P.l + µ.RN.a
From this we see that

the moment of frictional force
(µ.RN.a) adds to the moment
of force (P.l). In other words,
the frictional force helps to
apply the brake. Such type of
brakes are said to be self ener-
gizing brakes. When the fric-
tional force is great enough to
apply the brake with no exter-
nal force, then the brake is said
to be self-locking brake.

From the above ex-
pression, we see that if

.x a≤ µ , then P will be negative or equal to zero. This means no external force is needed to apply the brake and
hence the brake is self locking. Therefore the condition for the brake to be self locking is

.x a≤ µ
The self locking brake is used only in back-stop applications.

2. The brake should be self energizing and not the self locking.
3. In order to avoid self locking and to prevent the brake from grabbing, x is kept greater than µ . a.
4. If A b is the projected bearing area of the block or shoe, then the bearing pressure on the shoe,

             pb = RN / Ab

We know that       Ab = Width of shoe × Projected length of shoe = (2 sin )w r θ
5. When a single block or shoe brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to heavy normal force (RN) and produces bending of the shaft.
In order to overcome this drawback, a double block or shoe brake is used, as discussed in Art. 19.6.

19.5. Pivoted Block or Shoe Brake
We have discussed in the previous article that when the angle of contact is less than 60°, then

it may be assumed that the normal pressure between the block and the wheel is uniform. But
when the angle of contact is greater than 60°, then the unit
pressure normal to the surface of contact is less at the ends
than at the centre. In such cases, the block or shoe is pivoted
to the lever, as shown in Fig. 19.4, instead of being rigidly
attached to the lever. This gives uniform wear of the brake
lining in the direction of the applied force. The braking torque
for a pivoted block or shoe brake (i.e. when 2 θ  > 60°) is
given by

        B N. .tT F r R r′= × = µ

where         ′µ = Equivalent coefficient of friction = 
4 sin

2 sin 2

µ θ
θ + θ , and

           µ = Actual coefficient of friction.
These brakes have more life and may provide a higher braking torque.

Fig. 19.4. Pivoted block or shoe brake.

Shoe brakes of a racing car
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Example 19.1. A single block brake is shown in Fig. 19.5.

The diameter of the drum is 250 mm and the angle of contact is
90°. If the operating force of 700 N is applied at the end of a lever
and the coefficient of friction between the drum and the lining is
0.35, determine the torque that may be transmitted by the block
brake.

Solution. Given : d = 250 mm or r = 125 mm ; 2θ = 90°

 = / 2π  rad ; P = 700 N ; µ = 0.35
Since the angle of contact is greater than 60°, therefore

equivalent coefficient of friction,

                
4 sin 4 0.35 sin 45

2 sin 2 / 2 sin 90

µ θ × × °′µ = =
θ + θ π + ° = 0.385

Let                  RN = Normal force pressing the block to the brake drum, and

                  Ft = Tangential braking force = N.R′µ
Taking moments about the fulcrum O, we have

            N700(250 200) 50 200 200 200 520
0.385

t t
t t

F F
F R F+ + × = × = × = × =

′µ

or  520 Ft – 50Ft = 700 × 450    or     Ft = 700 × 450/470 = 670 N
We know that torque transmitted by the block brake,

               TB = Ft × r = 670 × 125 = 8 3750 N-mm = 83.75N-m Ans.

Example 19.2. Fig. 19.6 shows a brake shoe
applied to a drum by a lever AB which is
 pivoted at a fixed point A and rigidly fixed to the shoe.
The radius of the drum is 160 mm. The coefficient of
friction at the brake lining is 0.3. If the drum rotates
clockwise, find the braking torque due to the horizon-
tal force of 600 N at B.

Solution. Given : r = 160 mm = 0.16 m ;
µ = 0.3 ; P = 600 N

Since the angle subtended by the shoe at the
centre of drum is 40°, therefore we need not to calcu-
late the equivalent coefficient of friction .′µ

Let RN = Normal force pressing the
block to the brake drum, and

 Ft = Tangential braking force = µ.RN

Taking moments about point A ,
RN × 350 + Ft (200 – 160) = 600 (400 + 350)

350 40 600 750
0.3

t
t

F
F× + = ×  or 1207 Ft = 450 × 103

∴                  Ft = 450 × 103/1207 = 372.8 N
We know that braking torque,

      TB = Ft × r = 372.8 × 0.16 = 59.6 N-m Ans.

All dimensions in mm.
Fig. 19.5

Fig. 19.6
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Example 19.3. A bicycle and rider of mass 100 kg are travelling at the rate of 16 km/h on a
level road. A brake is applied to the rear wheel which is 0.9 m in diameter and this is the only
resistance acting. How far will the bicycle travel and how many turns will it make before it comes to
rest ? The pressure applied on the brake is 100 N and µ  = 0.05.

Solution. Given : m = 100 kg, v = 16 km / h = 4.44 m / s ; D = 0.9 m ; RN = 100 N ; µ = 0.05

Distance travelled by the bicycle before it comes to rest

Let      x = Distance travelled (in metres) by the bicycle before it comes to rest.

We know that tangential braking force acting at the point of contact of the brake and wheel,

                Ft = µ.RN = 0.05 × 100 = 5 N

and work done        = Ft × x = 5  × x = 5x N-m . . . (i)
We know that kinetic energy of the bicycle

                      

2 2. 100(4.44)

2 2
986N-m

mν= =

=

In order to bring the bicycle to rest, the work done
against friction must be equal to kinetic energy of the bi-
cycle. Therefore equating equations (i) and (ii),

   5x = 986  or   x = 986/5 = 197.2 m  Ans.
Number of revolutions made by the bicycle before it
comes to rest

Let     N = Required number of revolutions.
We know that distance travelled by the bicycle (x),

            197.2 0.9 2.83= π = π× =DN N N

∴               N = 197.2 / 2.83 = 70 Ans.
Example 19.4. A braking system has its braking lever inclined at an angle of 30° to the

horizontal plane, as shown in Fig. 19.7. The mass and diameter of the brake drum are 218 kg and
0.54 m respectively.

Fig. 19.7

At the instant the lever is pressed on the brake drum with a vertical force of 600 N, the drum
is found to rotate at 2400 r.p.m. clockwise. The coefficient of friction between the brake shoe and the
brake drum is 0.4. Assume that the lever and brake shoe are perfectly rigid and possess negligible
weight. Find :

Shoe brake.

. . . (ii)
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1. Braking torque, 2. Number of revolutions the drum will make before coming to rest from
the instant of pressing the lever, and 3. Time taken for the drum to come to rest from the instant of
pressing the lever.

Solution. Given : m = 218 kg ; d = 0.54 m   or   r = 0.27 m ;  P = 600 N ;  N = 2400 r.p.m.;
µ = 0.4
1. Braking torque

Let RN = Normal force pressing the block to the brake drum, and

Ft = Tangential braking force.

The various forces acting on the braking system are shown in Fig. 19.8.

Fig. 19.8
Taking moments about the fulcrum O,

   600 cos 30° × 1.2 = RN × 0.4      or      623.5 = 0.4 RN

∴            RN =  623.5/0.4 = 1560 N

and Ft  = µ.RN = 0.4 × 1560 = 624 N

We know that braking torque,

TB = Ft  × r = 624 × 0.27 = 168.5 N-m Ans.

2. Number of revolutions the drum will make before coming to rest

Let  n = Required number of revolutions.
We know that kinetic energy of the brake drum

   = 
2 22. 218 . 0.54 2400

109 N-m
2 2 60 60

m v d Nπ π× ×   = =      
   = 502 × 103 N-m . . . (i)

and work done by the brake drum due to braking torque

    = B 2 168.5 2 1060 N-mT n n n× π = × π = . . . (ii)

Since the kinetic energy of the brake drum is used to overcome the work done due to braking
torque, therefore equating equations (i) and (ii),

 n = 502 × 103/1060 = 474 Ans.

3. Time taken for the drum to come to rest

We know that time taken for the drum to come to rest i.e. time required for 474 revolutions,

  
474

0.2 min
2400

= = =n
t

N
= 12 s Ans.
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19.6. Double Block or Shoe Brake
When a single block brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to the normal force (RN). This produces
bending of the shaft. In order to overcome this drawback, a double
block or shoe brake, as shown in Fig. 19.9, is used. It consists of
two brake blocks applied at the opposite ends of a diameter of
the wheel which eliminate or reduces the unbalanced force on
the shaft. The brake is set by a spring which pulls the upper ends
of the brake arms together. When a force P is applied to the bell
crank lever, the spring is compressed and the brake is released.
This type of brake is often used on electric cranes and the force
P is produced by an electromagnet or solenoid. When the current
is switched off, there is no force on the bell crank lever and the
brake is engaged automatically due to the spring force and thus
there will be no downward movement of the load.

In a double block brake, the braking action is doubled
by the use of two blocks and these blocks may be operated
practically by the same force which will operate one. In case of
double block or shoe brake, the braking torque is given by

      TB = (Ft1 + Ft2) r
where Ft1 and Ft2 are the braking forces on the two blocks.

Example 19.5. A double shoe brake, as shown in Fig. 19.10,
is capable of absorbing a torque of 1400 N-m. The diameter of the
brake drum is 350 mm and the angle of contact for each shoe is 100°.
If the coefficient of friction between the brake drum and lining is
0.4 ; find 1. the spring force necessary to set the brake ; and 2. the
width of the brake shoes, if the bearing pressure on the lining
material is not to exceed 0.3 N/mm2.

Solution. Given :  TB = 1400 N-m = 1400 × 103 N-mm ;
d = 350 mm or r = 175 mm ; 2θ  = 100° = 100 × π/180 = 1.75 rad;

µ = 0.4 ; pb = 0.3 N/mm2

1. Spring force necessary to set the brake

Let            S  = Spring force necessary to
          set the brake.

RN1 and Ft1 = Normal reaction and the
        braking force on the right
           hand side shoe, and

 RN2 and Ft2 = Corresponding values on
           the left hand side shoe.

Since the angle of contact is greater than
60°, therefore equivalent coefficient of friction,

         
4 sin 4 0.4 sin 50

0.45
2 sin 2 1.75 sin100

µ θ × × °µ′ = = =
θ + θ + °

Fig. 19.9. Double block or shoe
 brake.

All dimensions in mm.
Fig. 19.10

Brakes on a railway coach.
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Taking moments about the fulcrum O1, we have

         
1

N1 1 1 1450 200 (175 40) 200 135 579.4
0.45 t t

t
t

F
S R F F F× = × + − = × + × =

. . . 
1

N1Substituting tF
R

 
= ′µ 

∴   Ft1 = S × 450 / 579.4 = 0.776 S

Again taking moments about O2, we have

            
2

2 N2 2450 (175 40) 200 200 444.4
0.45

t
t t

F
S F R F× + − = × = × =

. . .
2

N2Substituting tF
R

 
= ′µ 

      444.4 Ft2 – 135Ft2 = S × 450   or   309.4 Ft2 = S × 450
∴  Ft2 = S × 450 / 309.4 = 1.454 S

We know that torque capacity of the brake (TB),

  1400 × 103  = (Ft1 + Ft2 ) r = (0.776 S + 1.454 S) 175 = 390.25 S

∴     S = 1400 × 103/390.25 = 3587 N Ans.
2. Width of the brake shoes

Let     b = Width of the brake shoes in mm.
We know that projected bearing area for one shoe,

2(2 sin ) (2 175sin 50 ) 268 mmbA b r b b= θ = × ° =
Normal force on the right hand side of the shoe,

1
N1

0.776 0.776 3587
6186 N

0.45 0.45
tF S

R
× ×= = = =

′µ
and normal force on the left hand side of the shoe,

             
2

N2
1.454 1.454 3587

11 590 N
0.45 0.45

tF S
R

× ×= = = =
′µ

We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall
find the width of the shoe for the maximum normal force i.e. RN2.

We know that the bearing pressure on the lining material ( pb),

 
N2 11 590 43.25

0.3
268b

R

A b b
= = =

∴                  b = 43.25 / 0.3 = 144.2 mm Ans.

19.7. Simple Band Brake
A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with

friction material, which embraces a part of the circumference of the drum. A band brake, as shown in
Fig. 19.11, is called a simple band brake in which one end of the band is attached to a fixed pin or
fulcrum of the lever while the other end is attached to the lever at a distance b from the fulcrum.

When a force P is applied to the lever at C, the lever turns about the fulcrum pin O and tightens
the band on the drum and hence the brakes are applied. The friction between the band and the drum
provides the braking force. The force P on the lever at C may be determined as discussed below :

Let T1 = Tension in the tight side of the band,

T2 = Tension in the slack side of the band,
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θ  = Angle of lap (or embrace) of the band on the drum,
 µ = Coefficient of friction between the band and the drum,
  r = Radius of the drum,
  t = Thickness of the band, and

re = Effective radius of the drum = 
2

+ t
r

(a) Clockwise rotation of drum. (b) Anticlockwise rotation of drum.
Fig. 19.11. Simple band brake.

We know that limiting ratio of the tensions is given by the relation,

             1

2

µθ=T
e

T
or 1

2

2.3log .
T

T

 
= µθ 

 
and braking force on the drum = T1 – T2

∴  Braking torque on the drum,

              TB = (T1 – T2) r . . . (Neglecting thickness of band)

    = (T1 – T2) re  . . . (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum
rotates in the clockwise direction, as shown in Fig. 19.11 (a), the end of the band attached to the
fulcrum O will be slack with tension T2 and end of the band attached to B will be tight with tension T1.
On the other hand, when the drum rotates in the anticlockwise direction, as shown in Fig. 19.11 (b),
the tensions in the band will reverse, i.e. the end of the band attached to the fulcrum O will be tight
with tension T1 and the end of the band attached to B will be slack with tension T2. Now taking
moments about the fulcrum O, we have

           P.l = T1.b . . . (For clockwise rotation of the drum)

and            P.l = T2.b  . . . (For anticlockwise rotation of the drum)

Band brake Bands of a brake shown separately
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where   l = Length of the lever from the fulcrum (OC), and

 b = Perpendicular distance from O to the line of action of T1  or T2.

Notes : 1. When the brake band is attached to the lever, as shown in Fig. 19.11 (a) and (b), then the force (P)
must act in the upward direction in order to tighten the band on the drum.

2. If the permissible tensile stress ( σ ) for the material of the band is known, then maximum tension in
the band is given by

T1 = . .σ wt
where w = Width of the band, and

  t = thickness of the band.
Example 19.6. A band brake acts on the 3/4th of circumference of a drum of 450 mm diam-

eter which is keyed to the shaft. The band brake provides a braking torque of 225 N-m. One end of
the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum.
If the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25,
find the operating force when the drum rotates in the (a) anticlockwise direction, and (b) clockwise
direction.

Solution. Given : d = 450 mm or r = 225 mm = 0.225 m ; TB = 225 N-m ; b = OB = 100 mm
= 0.1 m ; l = 500 mm = 0.5 m ; µ = 0.25

Let    P = Operating force.
(a) Operating force when drum rotates in anticlockwise
direction

The band brake is shown in Fig. 19.11. Since one
end of the band is attached to the fulcrum at O, therefore the
operating force P will act upward and when the drum ro-
tates anticlockwise, as shown in Fig. 19.11 (b), the end of
the band attached to O will be tight with tension T1 and the
end of the band attached to B will be slack with tension T2.
First of all, let us find the tensions T1  and T2.

We know that angle of wrap,

                                
3 3

th of circumference = 360 270
4 4

θ = × ° = °

     270 /180 4.713 rad= × π =

and                1

1

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴                  1

2

1.178
log 0.5123

2.3

 
= = 

 

T

T
 or 1

2

3.253=T

T
. . . (i)

. . . (Taking antilog of 0.5123)
We know that braking torque (TB),

             225 = (T1 – T2) r = (T1 – T2) 0.225

∴                    T1 – T2 = 225 / 0.225 = 1000 N . . . (ii)

From equations (i) and (ii), we have

  T1 = 1444 N;  and      T2 = 444 N

Now taking moments about the fulcrum O, we have

          P × l = T2.b       or        P × 0.5 = 444 × 0.1 = 44.4

∴                 P = 44.4 / 0.5 = 88.8 N Ans.

Drums for band brakes.
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(b) Operating force when drum rotates in clockwise direction

When the drum rotates in clockwise direction, as shown in Fig.19.11 (a), then taking mo-
ments about the fulcrum O, we have

        P × l = T1. b        or       P × 0.5 = 1444 × 0.1 = 144.4
∴ P = 144.4 / 0.5 = 288.8 N Ans.
Example 19.7. The simple band brake, as shown in Fig. 19.12, is applied to a shaft carrying

a flywheel of mass 400 kg. The radius of gyration of the flywheel is 450 mm and runs at 300 r.p.m.
If the coefficient of friction is 0.2 and the brake drum

diameter is 240 mm, find :
1. the torque applied due to a hand load of 100 N,
2. the number of turns of the wheel before it is brought to

rest, and
3. the time required to bring it to rest, from the moment of

the application of the brake.

Solution. Given :  m = 400 kg ; k = 450 mm = 0.45 m ;
N = 300 r.p.m. or 2 300 / 60ω = π×  = 31.42 rad/s ; µ = 0.2 ;
d = 240 mm = 0.24 m or r = 0.12 m

1. Torque applied due to hand load
First of all, let us find the tensions in the tight and slack sides of the band i.e. T1 and T2

respectively.

From the geometry of the Fig. 19.12, angle of lap of the band on the drum,

         360 150 210 210 3.666 rad
180

πθ = ° − ° = ° = × =

We know that

     
1

2

2.3log . 0.2 3.666 0.7332
 

= µ θ = × = 
 

T

T

           1

2

0.7332
log 0.3188

2.3

 
= = 

 

T

T
       or 1

2

2.08=T

T
. . . (i)

... (Taking antilog of 0.3188)

Taking moments about the fulcrum O,

           T2 × 120 = 100 × 300 = 30 000 or  T2 = 30 000/120 = 250 N

∴                      T1 = 2.08T2 = 2.08 × 250 = 520 N  . . . [From equation (i)]
We know that torque applied,

       TB = (T1 – T2 ) r =  (520 – 250) 0.12 = 32.4 N-m Ans.
2. Number of turns of the wheel before it is brought to rest

Let          n = Number of turns of the wheel before it is brought to rest.
We know that kinetic energy of rotation of the drum

           2 2 2 2 21 1 1
. . . 400(0.45) (31.42)

2 2 2
= × ω = × ω = ×I m k = 40 000 N-m

This energy is used to overcome the work done due to the braking torque (TB).

∴              40 000 = TB × 2πn  = 32.4 × 2πn  = 203.6 n

or          n = 40 000 / 203.6 = 196.5 Ans.

All dimensions in mm.
Fig. 19.12
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3. Time required to bring the wheel to rest

We know that the time required to bring the wheel to rest
= n / N = 196.5 / 300 = 0.655 min = 39.3 s Ans.

Example 19.8. A simple band brake operates on a drum of 600 mm in diameter that is
running at 200 r.p.m. The coefficient of friction is 0.25. The brake band has a contact of 270°, one
end is fastened to a fixed pin and the other end to the brake arm 125 mm from the fixed pin. The
straight brake arm is 750 mm long and placed perpendicular to the diameter that bisects the angle of
contact.

1. What is the pull necessary on the end of the brake
arm to stop the wheel if 35 kW is being absorbed ? What is the
direction for this minimum pull ?

2. What width of steel band of 2.5 mm thick is required
for this brake if the maximum tensile stress is not to exceed
50 N/mm2 ?

Solution. Given : d = 600 mm or r = 300 mm ;

N = 200 r.p.m. ; µ = 0.25 ; 270 270 /180θ = ° = × π =4.713 rad ;
Power = 35 kW = 35 × 103 W ; t = 2.5 mm ; σ  = 50 N/mm2

1. Pull necessary on the end of the brake arm to stop the wheel

Let P = Pull necessary on the end of the brake arm to
stop the wheel.

The simple band brake is shown in Fig. 19.13. Since one end of the band is attached to the
fixed pin O, therefore the pull P on the end of the brake arm will act upward and when the wheel
rotates anticlockwise, the end of the band attached to O will be tight with tension T1 and the end of the
band attached to B will be slack with tension T2. First of all, let us find the tensions T1 and T2. We
know that

     
1

2

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴      1

2

1.178
log 0.5122

2.3

T

T

 
= = 

 
 or  1

2
3.25

T

T
=      ... (Taking antilog of 0.5122)  ... (i)

Let  TB = Braking torque.

We know that power absorbed,

       
3 B B

B
2 . 2 200

35 10 21
60 60

N T T
T

π× π× ×
× = = =

∴                3 3
B 35 10 / 21 1667 N-m 1667 10 N-mmT = × = = ×

We also know that braking torque (TB ),

  1667 × 103 = (T1 – T2)  r = (T1 – T2) 300

∴                     T1 – T2 = 1167 × 103/300 = 5556 N ...(ii)

From equations (i) and (ii), we find that

  T1 = 8025 N; and T2 = 2469 N

Fig. 19.13

All dimensions in mm



746  �   Theory of Machines

Now taking moments about O, we have

              P × 750 = T2 × *OD = T2 × 62.5 2  = 2469 × 88.4 = 218 260

∴                       P = 218260 / 750 = 291 N Ans.
2.  Width of steel band

Let         w = Width of steel band in mm.
We know that maximum tension in the band (T1),

    8025 = . .wtσ  = 50 × w × 2.5 = 125 w
∴          w = 8025 / 125 = 64.2 mm Ans.

19.8. Differential Band Brake
In a differential band brake, as shown in Fig. 19.14, the ends of the band are joined at A and

B to a lever AOC pivoted on a fixed pin or fulcrum O. It may be noted that for the band to tighten, the
length OA must be greater than the length OB.

    (a) Clockwise rotation of the drum. (a) Anticlockwise rotation of the drum.
Fig. 19.14.  Differential band brake.

The braking torque on the drum may be obtained
in the similar way as discussed in simple band brake. Now
considering the equilibrium of the lever AOC. It may be
noted that when the drum rotates in the clockwise direc-
tion, as shown in Fig. 19.14 (a), the end of the band
attached to A will be slack with tension T2 and end of the
band attached to B will be tight with tension T1. On the
other hand, when the drum rotates in the anticlockwise
direction, as shown in Fig. 19.14 (b), the end of the band
attached to A will be tight with tension T1 and end of the
band attached to B will be slack with tension T2. Now
taking moments about the fulcrum O, we have

 P.l  + T1.b = T2.a

... (For clockwise rotation of the drum )

or                     P.l = T2.a – T1.b  ... (i)

and        P.l + T2.b = T1.a
... (For anticlockwise rotation of the drum )

or         P.l = T1.a – T2.b ... (ii)

* OD = Perpendicular distance from O to the line of action of tension T2.
OE = EB = OB/2 = 125/2 = 62.5 mm, and ∠ DOE  = 45°

 ∴ OD = OE sec 45° = 62.5 2 mm

Tractors  are specially made to move on
rough terrain and  exert high power at

low speeds.

Note : This picture is given as additional
information and is not a direct example of the

current chapter.
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We have discussed in block brakes (Art. 19.4), that when the frictional force helps to apply

the brake, it is said to be self energizing brake. In case of differential band brake, we see from equa-
tions (i) and (ii) that the moment T1.b and T2.b helps in applying the brake (because it adds to the
moment P.l ) for the clockwise and anticlockwise rotation of the drum respectively.

We have also discussed that when the force P is negative or zero, then brake is self locking.
Thus for differential band brake and for clockwise rotation of the drum, the condition for self locking
is

2 1. .T a T b≤ or 2 1/ /T T b a≤
and for anticlockwise rotation of the drum, the condition for self locking is

1 2. .T a T b≤ or 1 2/ /T T b a≤
Notes : 1.  The condition for self locking may also be written as follows :

    For clockwise rotation of the drum,

1 2. .T b T a≥ or 1 2/ /T T a b≥
and for anticlockwise rotation of the drum,

2 1. .T b T a≥ or 1 2/ /T T a b≥
2. When in Fig. 19.14 (a) and (b), the length OB is greater than OA, then the force P must act in the

upward direction in order to apply the brake. The tensions in the band, i.e. T1 and T2 will remain unchanged.

Example 19.9. In a winch, the rope supports a load W and is wound round a barrel 450 mm
diameter. A differential band brake acts on a drum 800 mm diameter which is keyed to the same shaft
as the barrel. The two ends of the bands are attached to pins on opposite sides of the fulcrum of the
brake lever and at distances of 25 mm and 100 mm from the fulcrum. The angle of lap of the brake
band is 250° and the coefficient of friction is 0.25. What is the maximum load W which can be
supported by the brake when a force of 750 N is applied to the lever at a distance of 3000 mm from
the fulcrum ?

Solution. Given : D = 450 mm or R = 225 mm ; d = 800 mm or r = 400 mm ; OB = 25 mm ;
OA = 100 mm ; θ  = 250° = 250 × π/180 = 4.364 rad ;
µ = 0.25 ; P = 750 N ; l = OC = 3000 mm

Since OA is greater than OB, therefore the
operating force (P = 750 N) will act downwards.

First of all, let us consider that the drum rotates
in clockwise direction.

We know that when the drum rotates in clock-
wise direction, the end of band attached to A  will be
slack with tension T2 and the end of the band attached
to B will be tight with tension T1, as shown in Fig. 19.15.
Now let us find out the values of tensions T1 and T2. We
know that

1

2
2.3log . 0.25 4.364 1.091

T

T

 
= µ θ = × = 

 

∴    1

2

1.091
log 0.4743

2.3

T

T

 
= = 

 
 or 1

2
2.98

T

T
= ... (Taking antilog of 0.4743)

and                        T1 = 2.98 T2 ... (i)

Now taking moments about the fulcrum O,

    750 × 3000 + T1 × 25 = T2 × 100

All dimensions in mm.
Fig. 19.15
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or T2 × 100 – 2.98 T2 × 25 = 2250 × 103  ... (�  T1 = 2.98 T2)

 25.5 T2 = 2250 × 103 or T2 = 2250 × 103/25.5 = 88 × 103 N

and         T1 = 2.98T2 = 2.98 × 88 × 103 = 262 × 103 N

We know that braking torque,

       TB = (T1 – T2) r

= (262 × 103 – 88 × 103) 400 = 69.6 × 106 N-mm ...(i)
and the torque due to load W newtons,

      TW = W.R = W × 225 = 225 W N-mm ... (ii)
Since the braking torque must be equal to the torque due to load W  newtons, therefore from

equations (i) and (ii),
      W  = 69.6 × 106/225 = 309 × 103 N = 309 kN

Now let us consider that the drum rotates in
anticlockwise direction. We know that when the drum rotates
in anticlockwise direction, the end of the band attached to A
will be tight with tension T1 and end of the band attached to
B will be slack with tension T2, as shown in Fig. 19.16. The
ratio of tensions T1 and T2 will be same as calculated above,
i.e.

       1

2
2.98

T

T
=  or T1 = 2.98 T2

Now taking moments about the fulcrum O,

       750 × 3000 + T2 × 25 = T1 × 100

or 2.98 T2 × 100 – T2 × 25 = 2250 × 103  ... (�  T1 = 2.98 T2)

273 T2 = 2250 × 103      or      T2 = 2250 × 103/273 = 8242 N

and         T1 = 2.98 T2 = 2.98 × 8242 = 24 561 N

∴        Braking torque, TB = (T1 × T2) r

           = (24 561 – 8242)400 = 6.53 × 106 N-mm ...(iii)

From equations (ii) and (iii),

W = 6.53 × 106/225 = 29 × 103 N = 29 kN

From above, we see that the maximum load (W ) that can be supported by the brake is 309 kN,
when the drum rotates in clockwise direction. Ans.

Example 19.10. A differential band brake, as shown in Fig. 19.17, has an angle of contact of
225°. The band has a compressed woven lining and bears against a cast iron drum of 350 mm
diameter. The brake is to sustain a torque of 350 N-m and the coefficient of friction between the band
and the drum is 0.3. Find : 1. The necessary force (P) for the clockwise and anticlockwise rotation of
the drum; and 2. The value of ‘OA’ for the brake to be self locking, when the drum rotates clockwise.

Solution. Given: θ = 225° = 225 × π/180 = 3.93 rad ; d = 350 mm    or   r = 175 mm ;
T = 350 N-m = 350 × 103 N-mm

1. Necessary force (P) for the clockwise and anticlockwise rotation of the drum

When the drum rotates in the clockwise direction, the end of the band attached to A will be
slack with tension T2 and the end of the band attached to B will be tight with tension T1, as shown in
Fig. 19.18. First of all, let us find the values of tensions T1 and T2.

All dimensions in mm.
Fig. 19.16
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All dimensions in mm.
     Fig. 19.17   Fig. 19.18

We know that

      
1

2
2.3log . 0.3 3.93 1.179

T

T

 
= µ θ = × = 

 

∴         1

2

1.179
log 0.5126

2.3

T

T

 
= = 

 
     or    1

2
3.255

T

T
= ... (Taking antilog of 0.5126 ) ... (i)

and braking torque (TB),

          350 × 103 = (T1 – T2)r = (T1 – T2) 175

∴           T1 – T2 = 350 × 103/175 = 2000 N  ... (ii)
From equations (i) and (ii), we find that

        T1 = 2887 N ; and T2 = 887 N

Now taking moments about the fulcrum O, we have

            P × 500 = T2 × 150 – T1 × 35 = 887 × 150 – 2887 × 35 = 32 ×103

∴          P = 32 × 103/500 = 64 N Ans.

When the drum rotates in the anticlockwise
direction, the end of the band attached to A will be tight
with tension T1 and end of the band attached to B will
be slack with tension T2, as shown in Fig. 19.19. Taking
moments about the fulcrum O, we have

             P × 500 = T1 × 150 – T2 × 35

            = 2887 × 150 – 887 × 35

            = 402 × 103

          P = 402 × 103/500 = 804 N  Ans.
2. Value of ‘OA’ for the brake to be self locking, when
the drum rotates clockwise

The clockwise rotation of the drum is shown in Fig 19.18.
For clockwise rotation of the drum, we know that
            P × 500 = T2 × OA – T1 × OB

For the brake to be self locking, P must be equal to zero. Therefore
             T2 × OA = T1 × OB

and      
1

2

2887 35

887

T OB
OA

T

× ×= =  = 114 mm Ans.

Fig. 19.19
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19.9. Band and Block Brake
The band brake may be lined with blocks of wood or other material, as shown in Fig. 19.20

(a). The friction between the blocks and the drum provides braking action. Let there are ‘n’ number
of blocks, each subtending an angle 2θ  at the centre and the drum rotates in anticlockwise direction.

(a) (b)
Fig. 19.20. Band and block brake.

Let T1 = Tension in the tight side,
T2 = Tension in the slack side,
 µ = Coefficient of friction between the blocks and drum,

1T ′ = Tension in the band between the first and second block,

               2 3,T T′ ′  etc.= Tensions in the band between the second and third block,
         between the third and fourth block etc.

Consider one of the blocks (say first block) as shown in Fig. 19.20 (b). This is in equilibrium
under the action of the following forces :

1. Tension in the tight side (T1),

2. Tension in the slack side ( 1T ′ ) or tension in the band between the first and second block,
3. Normal reaction of the drum on the block (RN), and
4. The force of friction ( µ.RN ).

Resolving the forces radially, we have

1 1 N( )sinT T R′+ θ =  ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos .T T R′+ θ = µ  ... (ii)

Dividing equation (ii) by (i), we have

N1 1

N1 1

.( ) cos

( ) sin

RT T

RT T

′ µ− θ =
′+ θ

or 1 1 1 1( ) tan ( )T T T T′ ′− = µ θ +

∴     1

1

1 tan

1 tan

T

T

+ µ θ=
− µ θ′

Similarly, it can be proved for each of the blocks that

                  
3 11 2

22 3 4

1 tan
........

1 tan
nT TT T

TT T T

−′′ ′ + µ θ= = = =
− µ θ′ ′ ′
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∴              
11 1 1 2

2 21 2 3

1 tan
.........

1 tan

n
nTT T T T

T TT T T

−′ ′  + µ θ= × × × × = − µ θ′ ′ ′  
 ... (iii)

Braking torque on the drum of effective radius re ,

   TB = (T1 – T2) re

        = (T1 – T2) r  ... [Neglecting thickness of band]

Note : For the first block, the tension in the tight side is T1 and in the slack side is 1T ′  and for the second block,

the tension in the tight side is  1T ′ and in the slack side is 2T ′ . Similarly for the third block, the tension in the

tight side is 2T ′  and in the slack side is 3T ′ and so on. For the last block, the tension in the tight side is
Tn-1 and in the slack side is T2.

Example 19.11. In the band and block brake
shown in Fig. 19.21, the band is lined with 12 blocks
each of which subtends an angle of 15° at the centre
of the rotating drum. The thickness of the blocks is 75
mm and the diameter of the drum is 850 mm. If, when
the brake is in action, the greatest and least tensions
in the brake strap are T1 and T2, show that

12
1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ ° 
, where µ is the

coefficient of friction for the blocks.

With the lever arrangement as shown in
Fig.19.21, find the least force required at C for the
blocks to absorb 225 kW at 240 r.p.m. The coefficient
of friction between the band and blocks is 0.4.

Solution. Given : n = 12 ;    2θ  = 15°  or  θ  = 7.5°;   t = 75 mm = 0.075 m ;   d = 850 mm
= 0.85 m ;    Power = 225 kW = 225 × 103 W ;    N = 240 r.p.m.;    µ = 0.4

Since OA > OB, therefore the force at C must act downward. Also, the drum rotates clock-
wise, therefore the end of the band attached to A will be slack with tension T2 (least tension) and the
end of the band attached to B will be tight with tension T1 (greatest tension).

Consider one of the blocks (say first block) as shown in Fig. 19.22. This is in equilibrium
under the action of the following four forces :

1. Tension in the tight side (T1),

2. Tension in the slack side ( 1T ′ ) or the tension in the band between the first and second block,

3. Normal reaction of the drum on the block (RN), and

4. The force of friction ( µ.RN ).

Resolving the forces radially, we have

1 1 N( )sin 7.5T T R′+ ° = ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos 7.5 .T T R′− ° = µ ... (ii)

Dividing equation (ii) by (i), we have

1 1

1 1

( ) cos 7.5

( )sin 7.5

′− ° = µ
′+ °

T T

T T
    or   1 1

1 1

tan 7.5
T T

T T

′− = µ °
′+

All dimensions in mm.

Fig. 19.21

Fig. 19.22
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∴  1 1 1 1. tan 7.5 . tan 7.5T T T T′ ′− = µ ° + µ °

or                1 1(1 tan 7.5 ) (1 tan 7.5 )T T ′− µ ° = + µ °

∴                       1

1

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ °′  

Similarly, for the other blocks, the ratio of tensions 1 2

2 3

T T

T T

′ ′
=

′ ′
 etc. remains constant.

 Therefore for 12 blocks having greatest tension T1 and least tension T2 is

        

12
1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ ° 
Least force required at C

Let         P = Least force required at C.
We know that diameter of band,

         D = d + 2t = 0.85 + 2 × 0.075 = 1 m

∴ Power absorbed  = 
1 2( ) .

60

T T D N− π

or                
3

1 2
Power 60 225 10 60

1 240
T T

DN

× × ×− = =
π π × ×

= 17 900 N  ... (iii)

We have proved that

              

12 12 12
1

2

1 tan 7.5 1 0.4 0.1317 1.0527
3.55

1 tan 7.5 1 0.4 0.1317 0.9473

 + µ ° + ×   = = = =     − µ ° − ×    

T

T
... (iv)

From equations (iii) and (iv), we find that

       T1 = 24  920 N, and T2 = 7020 N

Now taking moments about O, we have

              P × 500 = T2 × 150 – T1 × 30 = 7020 × 150 – 24 920 × 30 = 305 400

∴           P = 305 400 / 500 = 610.8 N Ans.

Example 19.12.  A band and block brake, having 14 blocks each of which subtends an angle
of 15° at the centre, is applied to a drum of 1 m effective diameter. The drum and flywheel mounted
on the same shaft has a mass of 2000 kg and a combined radius of gyration of 500 mm. The two ends
of the band are attached to pins on opposite sides of the brake lever at distances of 30 mm and 120
mm from the fulcrum. If a force of 200 N is applied at a distance of 750 mm from the fulcrum, find:

1. maximum braking torque, 2. angular retardation of the drum, and 3. time taken by the
system to come to rest from the rated speed of 360 r.p.m.

The coefficient of friction between blocks and drum may be taken as 0.25.

Solution. Given : n = 14 ; 2θ  = 15°     or   θ  = 7.5° ;   d = 1 m    or    r = 0.5 m ;    m = 2000 kg ;
k = 500 mm = 0.5 m ;    P = 200 N ;    N = 360 r.p.m. ;    l = 750 mm ;    µ = 0.25

1. Maximum braking torque
The braking torque will be maximum when OB > OA and the drum rotates anticlockwise as

shown in Fig. 19.23. The force P must act upwards and the end of the band attached to A is tight under
tension T1 and the end of the band attached to B is slack under tension T2.
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Taking moments about O,

           200 × 750 + T1 × 30 = T2 × 120

        12 T2 – 3T1 = 15 000              . . . (i)

We know that             
1

2

1 tan

1 tan

n
T

T

 + µ θ=  − µ θ 

          = 
141 0.25 tan 7.5

1 0.25 tan 7.5

+ ° 
 − ° 

          = 
141 0.25 0.1317

1 .025 0.1317

+ × 
 − × 

          = (1.068)14 = 2.512 . . . (ii)

From equations (i) and (ii),

                 T1 = 8440 N, and T2 = 3360 N

We know that maximum braking torque,

                   B 1 2( ) (8440 3360)0.5 2540 N-mT T T r= − = − = Ans.

2.  Angular retardation of the drum

Let                  α  = Angular retardation of the drum.

We know that braking torque (TB ),

              2 22540 . . . 2000(0.5) 500I m k= α = α = α = α

∴                                 2540 / 500α = = 5.08 rad/s2 Ans.

3.  Time taken by the system to come to rest

Let                     t = Required time.

Since the system is to come to rest from the rated speed of 360 r.p.m., therefore

Initial angular speed, 1 2 360 / 60 37.7 rad/sω = π× =

and final angular speed, 2 0ω =

We know that 2 1 .tω = ω −α  . . . (– ve sign due to retardation )

∴                   1 / 37.7 / 5.08t = ω α =  = 7.42 s Ans.

19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake
An internal expanding brake consists of two shoes S1 and S2 as shown in Fig. 19.24. The

outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the
coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about
a fixed fulcrum O1 and O2 and made to contact a cam at the other end. When the cam rotates, the
shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum
produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in
off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep out
dust and moisture. This type of brake is commonly used in motor cars and light trucks.

All dimensions in mm
Fig. 19.23
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Fig. 19.24. Internal expanding brake. Fig. 19.25. Forces on an internal expanding brake.

We shall now consider the forces acting on such a brake, when the drum rotates in the
anticlockwise direction as shown in Fig. 19.25. It may be noted that for the anticlockwise direction,
the left hand shoe is known as leading or primary shoe while the right hand shoe is known as trailing
or secondary shoe.

Let  r = Internal radius of the wheel rim,
 b =  Width of the brake lining,
p1 = Maximum intensity of normal
        pressure,

            pN = Normal pressure,
F1 = Force exerted by the cam on
        the leading shoe, and
F2 = Force exerted by the cam on
        the trailing shoe.

Consider a small element of the brake lining
AC subtending an angle δθ  at the centre. Let OA
makes an angle θ with OO1 as shown in Fig. 19.25. It
is assumed that the pressure distribution on the shoe
is nearly uniform, however the friction lining wears
out more at the free end. Since the shoe turns about
O1, therefore the rate of wear of the shoe lining at A
will be proportional to the radial displacement of that point. The rate of wear of the shoe lining varies
directly as the perpendicular distance from O1 to OA, i.e. O1B. From the geometry of the figure,

                 O1B = OO1 sin θ
and normal pressure at A,

         N 1N
sin or sinp p p∝ θ = θ

∴      Normal force acting on the element,

 NRδ  = Normal pressure × Area of the element

          = 1N
( . . ) sin ( . . )p b r p b rδθ = θ δθ

and braking or friction force on the element,

    N 1. sin ( . . )F R p b rδ = µ ×δ = µ θ δθ

∴   Braking torque due to the element about O,     

                 2
B 1 1. sin ( . . ) . (sin . )T F r p b r r p b rδ = δ × = µ θ δθ = µ θ δθ

Internal expanding brake.

Loading Shoe

Return Spring
40 mm

70 mm overall,
50 mm spring,
one on each

side

135 mm

35 mm 25 mm
Trailing
Shoe

110 mm overall
(behind shoes)60 mm overall, 25 mm

spring

Lever
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and total braking torque about O for whole of one shoe,

         [ ]
2

2

1
1

2 2
B 1 1sin cosT p b r d p b r

θ
θ

θ
θ

= µ θ θ = µ − θ∫
= 2

1 21 (cos cos )p brµ θ − θ

Moment of normal force NRδ  of the element about the fulcrum O1,

   N N 1 N 1( sin )M R O B R OOδ = δ × = δ θ

= 
1

2
1 1 1sin ( . . ) ( sin ) sin ( . . )p b r OO p b r OOθ δθ θ = θ δθ

∴   Total moment of normal forces about the fulcrum O1,

     

2 2

1 1

2 2
N 1 1 11sin ( . . ) . . . sinM p b r OO p b r OO d

θ θ

θ θ

= θ δθ = θ θ∫ ∫

= 

2

1

1 1
1

. . . (1 cos 2 )
2

p b r OO d

θ

θ

− θ θ∫        ...
2 1

sin (1 cos2 )
2

 θ = − θ  
∵

= 
2

1

11
1 sin 2

. . .
2 2

p b r OO
θ

θ

θ θ −  

= 
2 1

1 2 11
sin 2 sin 21

. . .
2 2 2

p b r OO
θ θ θ − − θ +  

= 1 2 1 1 21
1 1

. . . ( ) (sin 2 sin 2 )
2 2

p b r OO
 θ − θ + θ − θ  

Moment of frictional force Fδ  about the fulcrum O1,

      F 1( cos )M F AB F r OOδ = δ × = δ − θ ... (∵  AB = r – OO1 cos θ )

11 sin ( . . ) ( cos )p b r r OO= µ θ δθ − θ

1 1. . . ( sin sin cos )p b r r OO= µ θ − θ θ δθ

= 
1

1. . . sin sin 2
2

OO
p b r r

 µ θ − θ δθ  
... ( 2sin cos sin2 )θ θ = θ∵

∴    Total moment of frictional force about the fulcrum O1,

         MF =
2

1

1
1 sin sin 2

2

OO
p b r r d

θ

θ

 µ θ − θ θ  ∫
2

1

1
1 cos cos 2

4

OO
p b r r

θ

θ

 = µ − θ + θ  

        = 1 1
1 2 2 1 1cos cos 2 cos cos 2

4 4

OO OO
p b r r r

 µ − θ + θ + θ − θ  

        = 
1

1 1 2 2 1(cos cos ) (cos 2 cos 2 )
4

OO
p b r r

 µ θ − θ + θ − θ  

Internal exparding brake.
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Now for leading shoe, taking moments about the fulcrum O1,
   F1 × l = MN – MF

and for trailing shoe, taking moments about the fulcrum O2,
 F2 × l  = MN + MF

Note : If MF > MN, then the brake becomes self locking.

Example 19.13. The arrangement of an internal expanding friction brake, in which the
brake shoe is pivoted at ‘C’ is shown in Fig. 19.26. The distance ‘CO’ is 75 mm, O being the centre
of the drum. The internal radius of the brake drum is
100 mm. The friction lining extends over an arc AB, such
that the angle AOC is 135° and angle BOC is 45°. The
brake is applied by means of a force at Q, perpendicular
to the line CQ, the distance CQ being 150 mm.

The local rate of wear on the lining may be taken as
proportional to the normal pressure on an element at an
angle of ‘ θ ’ with OC and may be taken as equal to

 p1 sin θ , where p1 is the maximum intensity of normal
pressure.

The coefficient of friction may be taken as 0.4 and
the braking torque required is 21 N-m. Calculate the force
Q required to operate the brake when 1. The drum rotates
clockwise, and 2. The drum rotates anticlockwise.

Solution. Given : OC = 75 mm ; r = 100 mm ;

2θ  = 135° = 135 × π /180 = 2.356 rad ; 1θ  = 45° = 45 × π/180 = 0.786 rad ; l = 150 mm ;

µ  = 0.4 ; TB = 21 N-m = 21 × 103 N-mm

1. Force ‘Q’ required to operate the brake when drum rotates clockwise

We know that total braking torque due to shoe (TB ),

 1
3 2

1 221 10 . . . (cos cos )p b r× = µ θ − θ

1

2
10.4 (100) (cos 45 cos135 ) 5656 .p b p b= × × ° − ° =

∴ 3
1. 21 10 / 5656 3.7p b = × =

Total moment of normal forces about the fulcrum C,

     
N 1 2 1 1 2

1 1
. . . ( ) (sin 2 sin 2 )

2 2
M p b r OC

 = θ − θ + θ − θ  

= 
1 1

3.7 100 75 (2.356 0.786) (sin 90 sin 270 )
2 2

 × × × − + ° − °  
= 13 875 (1.57 + 1) = 35 660 N-mm

and total moment of friction force about the fulcrum C,

       F 1 1 2 2 1. . . (cos cos ) (cos 2 cos 2 )
4

OC
M p b r r

 = µ θ − θ + θ − θ  

= 0.4 × 3.7 × 100 
75

100 (cos 45 cos135 ) (cos 270 cos90 )
4

 ° − ° + ° − °  
= 148 × 141.4 = 20 930 N-mm

All dimensions in mm
Fig. 19.26
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Taking moments about the fulcrum C, we have
 Q × 150 = MN + MF = 35 660 + 20 930 = 56 590

∴                      Q = 56 590 / 150 = 377 N Ans.
2. Force ‘Q’ required to operate the brake when drum rotates anticlockwise

Taking moments about the fulcrum C, we have
 Q × 150 = MN – MF = 35 660 – 20 930 = 14 730

∴                     Q = 14 730/150 = 98.2 N Ans.

19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle
In a four wheeled moving vehicle, the brakes may be applied to
1. the rear wheels only,
2. the front wheels only, and
3. all the four wheels.
In all the above mentioned three types of

braking, it is required to determine the retardation
of the vehicle when brakes are applied. Since the
vehicle retards, therefore it is a problem of
dynamics. But it may be reduced to an equivalent
problem of statics by including the inertia force in
the system of forces actually applied to the vehicle.
The inertia force is equal and opposite to the
braking force causing retardation.

Now, consider a vehicle moving up an
inclined plane, as shown in Fig. 19.27.

Let  α   =  Angle of inclination of the plane to the horizontal,

m = Mass of the vehicle in kg (such that its weight is m.g newtons),

h = Height of the C.G. of the vehicle above the road surface in metres,

x = Perpendicular distance of C.G. from the rear axle in metres,

L =  Distance between the centres of the rear and front wheels (also called wheel
base) of the vehicle in metres,

RA = Total normal reaction between the ground and the front wheels in newtons,

RB = Total normal reaction between the ground and the rear wheels in newtons,

µ = Coefficient of friction between the tyres and road surface, and

a = Retardation of the vehicle in m/s2.

We shall now consider the above mentioned three cases of braking, one by one. In all these
cases, the braking force acts in the opposite direction to the direction of motion of the vehicle.

1. When the brakes are applied to the rear wheels only
It is a common way of braking the vehicle in which the braking force acts at the rear wheels

only.
Let   FB = Total braking force (in newtons) acting at the rear wheels due to the

         application of the brakes. Its maximum value is µ.RB.
The various forces acting on the vehicle are shown in Fig. 19.27. For the equilibrium of the

vehicle, the forces acting on the vehicle must be in equilibrium.
Resolving the forces parallel to the plane,

B . .sin .F m g m a+ α =  . . . (i)

Fig. 19.27. Motion of vehicle up the inclined
plane and brakes are applied to rear wheels only.
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Resolving the forces perpendicular to the plane,

A B . cosR R m g+ = α  . . . (ii)
Taking moments about G, the centre of gravity of the vehicle,

FB × h + RB × x = RA (L – x)  . . . (iii)
Substituting the value of FB = µ.RB, and RA = m.g cos α  – RB  [from equation (ii) ] in the

above expression, we have
 µ.RB × h + RB × x = (m.g cos α  – RB) (L – x)

RB (L + µ.h) = m.g cos α  (L – x)

∴ RB = 
. cos ( )

.

m g L x

L h

α −
+ µ

and RA = B

. cos ( )
. cos . cos

.

m g L x
m g R m g

L h

α −α − = α −
+ µ

. cos ( . )

.

m g x h

L h

α + µ=
+ µ

We know from equation (i),

            B B B. sin .
sin sin

m

F m g F R
a g g

m m

+ α µ
= = + α = + α

               
. cos ( )

sin
.

g L x
g

L h

µ α −= + α
+ µ  . . . (Substituting the value of RB)

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ B A
. ( ) . ( . )

;
. .

m g L x m g x h
R R

L h L h

− + µ= =
+ µ + µ   and  

. ( )

.

g L x
a

L h

µ −=
+ µ

2. If the vehicle moves down the plane, then equation (i) becomes

B . sin .F m g m a− α =

∴
B B. . cos ( )

.sin .sin sin
.

F R g L x
a g g g

m m L h

µ µ α −= − α = − α = − α
+ µ

2. When the brakes are applied to front wheels only
It is a very rare way of braking the

vehicle, in which the braking force acts at the
front wheels only.
Let FA = Total braking force (in newtons)

     acting at the front wheels due to
   the application of brakes. Its
    maximum value is µ.RA.

The various forces acting on the vehicle
are shown in Fig. 19.28.

Resolving the forces parallel to the
plane,

A . sin .F m g m a+ α = . . . (i)
Resolving the forces perpendicular to

the plane,

    A B . cosR R m g+ = α  . . . (ii)

Fig. 19.28. Motion of the vehicle up the inclined
plane and brakes are applied to front wheels only.
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Taking moments about G, the centre of gravity of the vehicle,

FA × h + RB × x = RA (L – x)

Substituting the value of FA = µ.RA and RB = m.g cos α – RA [from equation (ii) ] in the above
expression, we have

µ.RA × h + (m.g cos α – RA) x = RA (L – x)

µ.RA × h + m.g cos α × x = RA × L

∴ A
. cos

.

m g x
R

L h

α×=
− µ

and B A
. cos

. cos . cos
.

m g x
R m g R m g

L h

α×= α − = α −
− µ

    
.

. cos 1 . cos
. .

x L h x
m g m g

L h L h

   − µ −= α − = α   − µ − µ   
We know from equation (i),

  
A A. sin . . sinF m g R m g

a
m m

+ α µ + α
= =

     = 
. . cos . sin

( . )

m g x m g

L h m m

µ α× α+
− µ  . . . (Substituting the value of RA)

    = 
. cos

sin
.

g x
g

L h

µ α × + α
− µ

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ A B
. . ( . )

; ;
. .

m g x m g L h x
R R

L h L h

× − µ −
= =

− µ − µ    and   
.

.

g x
a

L h

µ ⋅
=

− µ
2. When the vehicle moves down the plane, then equation (i) becomes

  A . sin .F m g m a− α =

∴  
A A. . cos

.sin .sin sin
m .

F R g x
a g g g

m L h

µ µ α×= − α = − α = − α
− µ

3. When the brakes are applied to all the four
wheels

This is the most common way of braking
the vehicle, in which the braking force acts on
both the rear and front wheels.

Let  FA = Braking force provided by the
             front wheels = µ.RA, and
    FB = Braking force provided by the
              rear wheels = µ.RB.

A little consideration will show that when
the brakes are applied to all the four wheels, the
braking distance (i.e. the distance in which the
vehicle is brought to rest after applying the
brakes) will be the least. It is due to this reason
that the brakes are applied to all the four wheels.

The various forces acting on the vehicle
are shown in Fig. 19.29.

Fig. 19.29. Motion of the vehicle up the inclined
plane and the brakes are applied to all
the four wheels.
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Resolving the forces parallel to the plane,

                      A B . sin .F F m g m a+ + α =  . . . (i)
Resolving the forces perpendicular to the plane,

           A B . cosR R m g+ = α  . . . (ii)
Taking moments about G, the centre of gravity of the vehicle,

                     A B B A( ) ( )F F h R x R L x+ + × = −  . . . (iii)

Substituting the value of A A B B. , .F R F R= µ = µ  and B A. cosR m g R= α −  [From equation
(ii)] in the above expression,

A B A A( ) ( . cos ) ( )R R h m g R x R L xµ + + α − = −

A A A A( . cos ) ( . cos ) ( )R m g R h m g R x R L xµ + α − + α − = −

        A. . cos . cosm g h m g x R Lµ α× + α× = ×

∴               RA = 
. cos ( . )m g h x

L

α µ +

and             B A
cos ( . )

. cos . cos
mg h x

R m g R m g
L

α µ += α − = α −

                           = 
. .

. cos 1 . cos
h x L h x

m g m g
L L

µ + − µ −   α − = α      
Now from equation (i),

   A B. . sin .R R m g m aµ + µ + α =

  A B( ) . sin .R R m g m aµ + + α =

   . . .cos . sin .m g m g m aµ α + α =  . . . [From equation (ii)]

∴          ( .cos sin )a g= µ α + α
Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴                        A B
. ( . ) .

; . ;
m g h x L h x

R R m g
L L

µ + − µ − = =   
 and a = g.µ

2. If the vehicle moves down the plane, then equation (i) may be written as

            A B . sin .F F m g m a+ − α =

or                       A B( ) . sin .R R m g m aµ + − α =

    . . cos . sin .m g m g m aµ α − α =
and                          ( .cos sin )a g= µ α − α

Example 19.14. A car moving on a level road at a speed 50 km/h has a wheel base 2.8
metres, distance of C.G. from ground level 600 mm, and the distance of C.G. from rear wheels 1.2
metres. Find the distance travelled by the car before coming to rest when brakes are applied,

1. to the rear wheels, 2. to the front wheels, and 3. to all the four wheels.
The coefficient of friction between the tyres and the road may be taken as 0.6.

Solution. Given : u = 50 km/h = 13.89 m/s ; L = 2.8 m ; h = 600 mm = 0.6 m ; x = 1.2 m ; µ = 0.6
 Let      s = Distance travelled by the car before coming to rest.

1. When brakes are applied to the rear wheels
Since the vehicle moves on a level road, therefore retardation of the car,

             
2. ( ) 0.6 9.81(2.8 1.2)

2.98 m/s
. 2.8 0.6 0.6

g L x
a

L h

µ − × −= = =
+ µ + ×
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We know that for uniform retardation,

2 2(13.89)

2 2 2.98
u

s
a

= =
×

= 32.4 m Ans.

2. When brakes are applied to the front wheels
Since the vehicle moves on a level road, therefore retardation of the car,

2. . 0.6 9.18 1.2
2.9 m/s

. 2.8 0.6 0.6

g x
a

L h

µ × ×= = =
− µ − ×

We know that for uniform retardation,
2 2(13.89)

2 2 2.9
u

s
a

= =
×

 = 33.26 m Ans.

3. When the brakes are applied to all the four wheels
Since the vehicle moves on a level road, therefore retardation of the car,

2. 9.81 0.6 5.886 m/sa g= µ = × =
We know that for uniform retardation,

2 2(13.89)

2 2 5.886
u

s
a

= =
×

 = 16.4 m  Ans.

Example 19.15. A vehicle moving on a rough plane inclined at 10° with the horizontal at a
speed of 36 km/h has a wheel base 1.8 metres. The centre of gravity of the vehicle is 0.8 metre from
the rear wheels and 0.9 metre above the inclined plane. Find the distance travelled by the vehicle
before coming to rest and the time taken to do so when 1. The vehicle moves up the plane, and 2. The
vehicle moves down the plane.

The brakes are applied to all the four wheels and the coefficient of friction is 0.5.

Solution. Given :  α = 10°; u = 36 km / h = 10 m / s ; L = 1.8 m ; x = 0.8 m ; h = 0.9 m ; µ = 0.5
Let                s = Distance travelled by the vehicle before  coming to rest, and

              t = Time taken by the vehicle in coming to rest.
1.  When the vehicle moves up the plane and brakes are applied to all the four wheels

Since the vehicle moves up the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α + α

    = 9.81 (0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)° + ° = × + = 6.53 m/s2

We know that for uniform retardation,

2 2(10)

2 2 6.53
u

s
a

= =
×

 = 7.657 m Ans.

and final velocity of the vehicle (v),

0 . 10 6.53u a t t= + = − . . .(Minus sign due to retardation)

∴                 t = 10 / 6.53 = 1.53 s Ans.
2.  When the vehicle moves down the plane and brakes are applied to all the four wheels

Since the vehicle moves down the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α − α

   9.81(0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)= ° − ° = × − = 3.13 m/s2
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We know that for uniform retardation,

2 2(10)

2 2 3.13
u

s
a

= =
×

= 16 m Ans.

and final velocity of the vehicle (v),
0 = u + a.t = 10 – 3.13 t . . . (Minus sign due to retardation)

∴   t = 10/3.13 = 3.2 s Ans.

Example 19.16. The wheel base of a car is 3 metres and its centre of gravity is 1.2 metres
ahead the rear axle and 0.75 m above the ground level. The coefficient of friction between the wheels
and the road is 0.5. Determine the maximum deceleration of the car when it moves on a level road,
if the braking force on all the wheels is the same and no wheel slip occurs.

Solution. Given : L = 3 m ; x = 1.2 m ; h = 0.75 m ; µ = 0.5
Let a = Maximum deceleration of the car,

m = Mass of the car,

FA and FB = Braking forces at
the front and
rear wheels

 respectively, and
 RAand RB  = Normal reactions

   at the front and
 rear wheels

 respectively.
The various forces acting on the car are

shown in Fig. 19.30.
We shall consider the following two cases:

(a) When the slipping is imminent at the rear wheels
We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            B
. 3 0.5 0.75 1.2

. 9.81 4.66 N
3

L h x
R m g m m

L

− µ − − × −   = = × =      
and       FA + FB = m.a or 2µ.  RB = m.a . . . (∵  FB = FA and FB = µ.RB)

∴             2 × 0.5 × 4.66 m = m.a or a = 4.66 m/s2

(b) When the slipping is imminent at the front wheels
We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            A
. ( . ) 9.81(0.5 0.75 1.2)

5.15 N
3

m g h x m
R m

L

µ + × × += = =

and                    FA + FB = m.a      or          2µ . RA = m.a . . . (∵  FA = FB and FA = µ . RA)

∴       2 × 0.5 × 5.15 m = m.a      or                 a = 5.15 m/s2

Hence the maximum possible deceleration is 4.66 m/s2 and slipping would occur first at the
rear wheels. Ans.

19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer
A dynamometer is a brake but in addition it has a device to measure the frictional resistance.

Knowing the frictional resistance, we may obtain the torque transmitted and hence the power of the
engine.

Fig. 19.30
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19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers
Following are the two types of

dynamometers, used for measuring the brake
power of an engine.

1. Absorption dynamometers, and
2. Transmission dynamometers.

In the absorption dynamometers, the
entire energy or power produced by the
engine is absorbed by the friction resistances
of the brake and is transformed into heat,
during the process of measurement. But in
the transmission dynamometers, the energy
is not wasted in friction but is used for doing
work. The energy or power produced by the
engine is transmitted through the dynamom-
eter to some other machines where the power
developed is suitably measured.

19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers
The following two types of absorption dynamometers are important from the subject point of

view :
1. Prony brake dynamometer, and 2. Rope brake dynamometer.
These dynamometers are discussed, in detail, in the following pages.

19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer
A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown

in Fig. 19.31. It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine
whose power is required to be measured. The blocks are clamped by means of two bolts and nuts, as
shown in Fig. 19.31. A helical spring is provided between the nut and the upper block to adjust the
pressure on the pulley to control its speed. The upper block has a long lever attached to it and carries
a weight W at its outer end. A counter weight is placed at the other end of the lever which balances the
brake when unloaded. Two stops S, S are provided to limit the motion of the lever.

Fig. 19.31. Prony brake dynamometer.

When the brake is to be put in operation, the long end of the lever is loaded with suitable
weights W and the nuts are tightened until the engine shaft runs at a constant speed and the lever is in
horizontal position. Under these conditions, the moment due to the weight W must balance the mo-
ment of the frictional resistance between the blocks and the pulley.

Dynamometers  measure the power of the engines.
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Let W = Weight at the outer end of the lever in newtons,
L = Horizontal distance of the weight W

from the centre of the pulley in metres,
F = Frictional resistance between the blocks

and the pulley in newtons,
R = Radius of the pulley in metres, and
N = Speed of the shaft in r.p.m.
We know that the moment of the frictional re-

sistance or torque on the shaft,
                T = W.L = F.R N-m

Work done in one revolution
       = Torque × Angle turned in radians

                     = 2 N-mT × π
  ∴     Work done per minute

            = 2 N-mT N× π
We know that brake power of the engine,

            
Work done per min. 2 . 2

. . watts
60 60 60

T N W L N
B P

× π × π= = =

Notes : 1. From the above expression, we see that while determining the brake power of engine with the help of
a prony brake dynamometer, it is not necessary to know the radius of the pulley, the coefficient of friction
between the wooden blocks and the pulley and the pressure exerted by tightening of the nuts.

2. When the driving torque on the shaft is not uniform, this dynamometer is subjected to severe oscil-
lations.

19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most commonly used for measur-
ing the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or
rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring
balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.
19.32. In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at
intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional
torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let W = Dead load in newtons,

S = Spring balance reading in newtons,

D = Diameter of the wheel in metres,

d = diameter of rope in metres, and

N  = Speed of the engine shaft in r.p.m.

∴  Net load on the brake

   = (W – S) N

We know that distance moved in one revolution

  = ( )mD dπ +

Another dynamo
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∴     Work done per revolution

= ( ) ( ) N-mW S D d− π +
and work done per minute

= ( ) ( ) N-mW S D d N− π +

Fig. 19.32. Rope brake dynamometer.

∴     Brake power of the engine,

 
Work done per min ( ) ( )

B.P watts
60 60

W S D d N− π += =

If the diameter of the rope (d) is neglected, then brake
power of the engine,

( )
B.P. watts

60

W S D N− π=

Note: Since the energy produced by the engine is absorbed by the
frictional resistances of the brake and is transformed into heat,
therefore it is necessary to keep the flywheel of the engine cool with
soapy water. The flywheels have their rims made of a channel section
so as to receive a stream of water which is being whirled round by
the wheel. The water is kept continually flowing into the rim and is
drained away by a sharp edged scoop on the other side, as shown in
Fig. 19.32.

Example 19.17. In a laboratory experiment, the
following data were recorded with rope brake:

Diameter of the flywheel 1.2 m; diameter of the rope
12.5 mm; speed of the engine 200 r.p.m.; dead load on the
brake 600 N; spring balance reading 150 N. Calculate the
brake power of the engine.

Solution. Given : D = 1.2 m ; d = 12.5 mm
= 0.0125 m ; N = 200 r.p.m ; W = 600 N ; S = 150 N

An engine is being readied for
testing on a dynamometer
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We know that brake power of the engine,

( ) ( ) (600 150) (1.2 0.0125)200
B.P. 5715 W

60 60

W S D d N− π + − π += = =

       = 5.715 kW Ans.

19.17.19.17.19.17.19.17.19.17. Classification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission Dynamometers
The following types of transmission dynamometers are important from the subject point of

view :
1. Epicyclic-train dynamometer, 2. Belt transmission dynamometer, and 3. Torsion dyna-

mometer.
We shall now discuss these dynamometers, in detail, in the following pages.

19.18.19.18.19.18.19.18.19.18. Epicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train Dynamometer

Fig. 19.33. Epicyclic train dynamometer.
An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train

of gears, i.e. a spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is
keyed to the engine shaft (i.e. driving shaft) and rotates in anticlockwise direction. The annular gear
is also keyed to the driving shaft and rotates in clockwise direction. The pinion or the intermediate
gear meshes with both the spur and annular gears. The pinion revolves freely on a lever which is
pivoted to the common axis of the driving and driven shafts. A weight w is placed at the smaller end
of the lever in order to keep it in position. A little consideration will show that if the friction of the pin
on which the pinion rotates is neglected, then the tangential effort P exerted by the spur gear on the
pinion and the tangential reaction of the annular gear on the pinion are equal.

Since these efforts act in the upward direction as shown, therefore total upward force on the
lever acting through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum
and it is balanced by a dead weight W at the end of the lever. The stops S, S are provided to control the
movement of the lever.

For equilibrium of the lever, taking moments about the fulcrum F,
 2P × a = W.L or P = W.L /2a

Let   R = Pitch circle radius of the spur gear in metres, and
      N  = Speed of the engine shaft in r.p.m.

∴    Torque transmitted,   T = P.R

and power transmitted                    2 . 2
watts

60 60

T N P R N× π × π= =
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19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission
DynamometerDynamometerDynamometerDynamometerDynamometer

When the belt is transmitting power from one pulley to another, the tangential effort on the
driven pulley is equal to the difference between the tensions in the tight and slack sides of the belt. A
belt dynamometer is introduced to measure directly the difference between the tensions of the belt,
while it is running.

Fig. 19.34. Froude or Throneycroft transmission dynamometer.
A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft

transmission dynamometer. It consists of a pulley A (called driving pulley) which is rigidly fixed to
the shaft of an engine whose power is required to be measured. There is another pulley B (called
driven pulley) mounted on another shaft to which the power from pulley A is transmitted. The pulleys
A and B are connected by means of a continuous belt passing round the two loose pulleys C and D
which are mounted on a T-shaped frame. The frame is pivoted at E and its movement is controlled by
two stops S,S. Since the tension in the tight side of the belt (T1) is greater than the tension in the slack
side of the belt (T2), therefore the total force acting on the pulley C (i.e. 2T1) is greater than the total
force acting on the pulley D (i.e. 2T2). It is thus obvious that the frame causes movement about E in
the anticlockwise direction. In order to balance it, a weight W is applied at a distance L from E on the
frame as shown in Fig. 19.34.

Now taking moments about the pivot E, neglecting friction,

1 22 2 .T a T a W L× = × + or 1 2
.

2

W L
T T

a
− =

Let D = diameter of the pulley A in metres, and
N = Speed of the engine shaft in r.p.m.

∴          Work done in one revolution = 1 2( ) N-mT T D− π

and workdone per minute                    = 1 2( ) N-mT T DN− π

∴    Brake power of the engine, 1 2( )
B.P. watts

60

T T DN− π
=

Example 19.18. The essential features of a transmission dynamometer are shown in Fig.
19.35. A is the driving pulley which runs at 600 r.p.m. B and C are jockey pulleys mounted on a
horizontal beam pivoted at D, about which point the complete beam is balanced when at rest. E is the
driven pulley and all portions of the belt between the pulleys are vertical. A, B and C are each 300
mm diameter and the thickness and weight of the belt are neglected. The length DF is 750 mm.

Find : 1. the value of the weight W to maintain the beam in a horizontal position when
4.5 kW is being transmitted, and 2. the value of W, when the belt just begins to slip on pulley A. The
coefficient of friction being 0.2 and maximum tension in the belt 1.5 kN.
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Fig. 19.35. All dimensions in mm.

Solution. Given : NA = 600 r.p.m. : DA = DB = DC = 300 mm = 0.3 m
1. Value of the weight W to maintain the beam in a horizontal position

Given : Power transmitted (P) = 4.5 kW = 4500 W
Let T1 = Tension in the tight side of the belt on pulley A, and

T2 = Tension in the slack side of the belt on pulley A.
∴   Force acting upwards on the pulley C = 2T1
and force acting upwards on the pulley B = 2T2
Now taking moments about the pivot D,

W × 750 = 2T1 × 300 – 2T2 × 300 = 600 (T1 – T2)
∴  T1 – T2 = W × 750 / 600 = 1.25 W N
We know that the power transmitted (P),

1 2 A A( ) 1.25 0.3 600
4500 11.78

60 60

T T D N W
W

− π × π× ×= = =

∴    W = 4500 / 11.78 = 382 N Ans.
2. Value of W, when the belt just begins to slip on A

Given :   µ = 0.2 ; T1 = 1.5 kN = 1500 N

We know that

1

2
2.3log . 0.2 0.6284

T

T

 
= µ θ = × π = 

 
. . . (∵ θ  = 180° = π rad)

    1

2

0.6284
log 0.2732

2.3

 
= = 

 

T

T
    or   1

2
1.876

T

T
=   . . . (Taking antilog of 0.2732)

∴  T2 = T1 / 1.876 = 1500 / 1.876 = 800 N
Now taking moments about the pivot D,
               W × 750 = 2T1 × 300 – 2T2 × 300 = 2 × 1500 × 300 – 2 × 800 × 300

                = 420 × 103

∴            W = 420 × 103/ 750 = 560 N Ans.



Chapter 19 : Brakes and Dynamometers           �          769

19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer
A torsion dynamometer is used for measuring large powers particularly the power transmit-

ted along the propeller shaft of a turbine or motor vessel. A little consideration will show that when
the power is being transmitted, then the driving end of the shaft twists through a small angle relative
to the driven end of the shaft. The amount of twist depends upon many factors such as torque acting
on the shaft (T), length of the shaft (l), diameter of the shaft (D) and modulus of rigidity (C) of the
material of the shaft. We know that the torsion equation is

.T C

J l

θ=

where θ  = Angle of twist in radians, and
 J = Polar moment of inertia of the shaft.

For a solid shaft of diameter D, the polar moment of inertia
4

32
J D

π= ×

and for a hollow shaft of external diameter D and internal diameter d, the polar moment of inertia,
4 4( )

32
J D d

π= −

From the above torsion equation,
.

.
C J

T k
l

= ×θ = θ

where k = C.J/l is a constant for a particular shaft. Thus, the torque acting on the shaft is proportional
to the angle of twist. This means that if the angle of twist is measured by some means, then the torque
and hence the power transmitted may be determined.

We know that the power transmitted
2

60

T N
P

× π=  watts, where N is the speed in r.p.m.

A number of dynamometers are used to measure the angle of twist, one of which is discussed
in Art. 19.21. Since the angle of twist is measured for a small length of the shaft, therefore some
magnifying device must be introduced in the dynamometer for accurate measurement.

Example 19.19. A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is
found that the shaft twists 2° in a length of 20 metres at 120 r.p.m. If the shaft is hollow with 400 mm
external diameter and 300 mm internal diameter, find the power of the engine. Take modulus of
rigidity for the shaft material as 80  GPa.

Solution. Given : θ  = 2° = 2 × π /180 = 0.035 rad ; l = 20 m ; N = 120 r.p.m. ; D = 400 mm
= 0.4 m ; d = 300 mm = 0.3 m ; C = 80 GPa =  80 × 109 N/m2

We know that polar moment of inertia of the shaft,

4 4 4 4 4( ) (0.4) (0.3) 0.0017m
32 32

J D d
π π  = − = − = 

and torque applied to the shaft,
9

3. 80 10 0.0017
0.035 238 10 N-m

20
C J

T
l

× ×= × θ = × = ×

We know that power of the engine,
32 238 10 2 120

60 60
× π × × π×= =T N

P  = 2990 × 103 W = 2990 kW Ans.
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19.21. Bevis-Gibson Flash Light Torsion Dynamometer

Fig. 19.36. Bevis-Gibson flash light torsion dynamometer.

It depends upon the fact that the light travels in a straight line through air of uniform density
and the velocity of light is infinite. It consists of two discs A and B fixed on a shaft at a convenient
distance apart, as shown in Fig. 19.36 (a). Each disc has a small radial slot and these two slots are in
the same line when no power is transmitted and there is no torque on the shaft. A bright electric lamp
L, behind the disc A , is fixed on the bearing of the shaft. This lamp is masked having a slot directly
opposite to the slot of disc A . At every revolution of the shaft, a flash of light is projected through the
slot in the disc A towards the disc B in a direction parallel to the shaft. An eye piece E is fitted behind
the disc B on the shaft bearing and is capable of slight circumferential adjustment.

When the shaft does not transmit any torque (i.e. at rest), a flash of light may be seen after
every revolution of the shaft, as the positions of the slit do not change relative to one another as shown
in Fig. 19.36 (b). Now when the torque is transmitted, the shaft twists and the slot in the disc B
changes its position, though the slots in L, A and E are still in line. Due to this, the light does not reach
to the eye piece as shown in Fig. 19.36 (c). If the eye piece is now moved round by an amount equal
to the lag of disc B, then the slot in the eye piece will be opposite to the slot in disc B as shown in Fig.
19.36 (d) and hence the eye piece receives flash of light. The eye piece is moved by operating a
micrometer spindle and by means of scale and vernier, the angle of twist may be measured upto
1/100th of a degree.

The torsion meter discussed above gives the angle of twist of
the shaft, when the uniform torque is transmitted during each revolution
as in case of turbine shaft. But when the torque varies during each revo-
lution as in reciprocating engines, it is necessary to measure the angle of
twist at several different angular positions. For this, the discs A and B
are perforated with slots arranged in the form of spiral as shown in Fig.
19.37. The lamp and the eye piece must be moved radially so as to bring
them into line with each corresponding pair of slots in the discs.

EXERCISES
1. A single block brake, as shown in Fig. 19.38, has the drum diameter 250 mm. The angle of contact is

90° and the coefficient of friction between the drum and the lining is 0.35. If the operating force of
650 N is applied at the end of the lever, determine the torque that may be transmitted by the block
brake. [Ans. 65.6 N-m]

Fig. 19.37.  Perforated
disc.
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                        Fig. 19.38                                                        Fig. 19.39
2. The layout and dimensions of a double shoe brake is shown in Fig. 19.39. The diameter of the brake

drum is 300 mm and the contact angle for each shoe is 90°. If the coefficient of friction for the brake
lining and the drum is 0.4, find the spring force necessary to transmit a torque of 30 N-m. Also
determine the width of the brake shoes, if the bearing pressure on the lining material is not to exceed
0.28 N/mm2. [Ans. 98.4 N ; 5 mm]

3. The arrangements of a transmission brake is shown in Fig. 19.40. The arms are pivoted at O1 and O2
and when force is applied at the end of a hand lever, the screw A B rotates. The left and right hand
threads working in nuts on the ends of the arms move the arms together and thus apply the brake. The
force on the hand lever is applied 400 mm from the axis of the screw.
The drum is 240 mm in diameter and the angle subtended by each is 90°. The screw has six square
threads with a mean diameter of 20 mm and a lead of 55 mm. Assuming a coefficient of friction for the
braking surface as 0.3 and for the threads 0.15, determine the force on the hand lever required to set
the brake when the torque on the drum is 245 N-m. [Ans. 86.5 N]

All dimensions in mm.          All dimensions in mm.
Fig. 19.40 Fig. 19.41

4. The layout and dimensions of the block brake are shown in Fig. 19.41. The diameter of the wheel is
300 mm and the contact angle for each block is 90°. If the coefficient of friction for the brake lining
and wheel is 0.4 and the torque on the wheel is 30 N-m, find the force P on the operating arm required
to set the brake for anticlockwise rotation of the wheel. [Ans. 10 N]

5. A simple band brake is operated by a lever of length 500 mm. The brake drum has a diameter of 500
mm and the brake band embraces 5/8 of the circumference. One end of the band is attached to the
fulcrum of the lever while the other end is attached to a pin on the lever 100 mm from the fulcrum. If
the effort applied to the end of the lever is 2 kN and the coefficient of friction is 0.25, find the
maximum braking torque on the drum. [Ans. 4.2 kN-m]

All dimensions in mm.
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6. A differential band brake acting on the 3/4 th of the circumference of a drum of 450 mm diameter, is
to provide a braking torque of 225 N-m. One end of the band is attached to a pin 100 mm from the
fulcrum of the lever and the other end to another pin 25 mm from the fulcrum on the other side of it
where the operating force is also acting. If the operating force is applied at 500 mm from the fulcrum
and the coefficient of friction is 0.25, find the two values of the operating force corresponding to two
directions of rotation of the drum. [Ans. 16.6 N for clockwise ; 266.6 N for anticlockwise]

7. A differential band brake is shown in Fig. 19.42. The diameter of the drum is 800 mm. The coefficient
of friction between the band and the drum is 0.3 and the angle of embrace is 240°.

     Fig. 19.42      Fig. 19.43

When a force of 600 N is applied at the free end of the lever, find for clockwise and anticlockwise
rotation of the drum: 1. the maximum and minimum forces in the band ; and 2. the torque which can
be applied by the brake.   [Ans. 176 kN, 50 kN, 50.4 kN-m ; 6.46 kN, 1.835 kN, 1.85 kN-m]

8. A differential band brake is shown in Fig. 19.43. The diameter of the drum is 1 metre and rotates at
1200 r.p.m. in the anticlockwise direction. The angle of contact is 320°. The various lengths are :
OA = 30 mm; AB = 150 mm and OC = 700 mm. Find the pull
required at the end C of a lever to absorb 40 kW. Also find the
length of AB for self locking. The coefficient of friction may
be taken as 0.2.                             [Ans. 25.7 N ; 91.8 mm]

9. In a band and block brake, the band is lined with 14 blocks,
each of which subtends an angle of 20° at the drum centre.
One end of the band is attached to the fulcrum of the brake
lever and the other to a pin 150 mm from the fulcrum. Find the
force required at the end of the lever 1 metre long from the
fulcrum to give a torque of 4 kN-m. The diameter of the brake
drum is 1 metre and the coefficient of friction between the
blocks and the drum is 0.25.                         [Ans. 1712 N]

10. Fig. 19.44 shows the particulars of two brake shoes which act
on the internal surface of a cylindrical brake drum. The braking
forces F1 and F2 are applied as shown, and each shoe pivots on its fixed fulcrum O1 and O2.

The width of the brake lining is 35 mm. The intensity of pressure at any point A is 0.4 sin θ  N/mm2,
where θ is measured as shown from either pivot. The coefficient of friction is 0.4. Determine the
braking torque and the magnitude of the forces F1 and F2. [Ans. 373 N-m ; 685 N, 2323 N]

11. A lorry is moving on a level road at a speed of 36 km/h. Its centre of gravity lies at a distance of 0.6 m
from the ground level. The wheel base is 2.4 metres and the distance of C.G. from the rear wheels is
0.9 m. Find the distance travelled by the car before coming to rest when brakes are applied,
(a)   to the rear wheels, (b) to the front wheels, and (c) to all the four wheels.

The coefficient of friction between the tyres and the road surface is 0.45.
[Ans. 21.55 m; 26.82 m; 11.36 m]

12. A torsion dynamometer is fitted on a turbine shaft to measure the angle of twist. It is observed that the
shaft twists 1.5° in a length of 5 metres at 500 r.p.m. The shaft is solid and has a diameter of 200 mm.
If the modulus of rigidity for the shaft material is 85 GPa, find the power transmitted by the turbine.

[Ans. 3662 kW]

    Fig. 19.44
All dimensions in mm.
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DO YOU KNOW ?
1. Distinguish between brakes and dynamometers.
2. Discuss the various types of the brakes.
3. Show that, in a band and block brake, the ratio of the maximum and minimum tensions in the brake

straps is

0 1 tan

1 tan

n

n

T

T

 + µ θ=  − µ θ 
where  T0 = Maximum tension,

 Tn = Minimum tension
  µ = Coefficient of friction between the blocks and drum, and

             2θ  = Angle subtended by each block at the centre of the drum.
4. Describe with the help of a neat sketch the principles of operation of an internal expanding shoe.

Derive the expression for the braking torque.
5. What are the leading and trailing shoes of an internal expanding shoe brake ?
6. What is the difference between absorption and transmission dynamometers ? What are torsion dyna-

mometers ?
7. Describe the construction and operation of a prony brake or rope brake absorption dynamometer.
8. Describe with sketches one form of torsion dynamometer and explain with detail the calculations

involved in finding the power transmitted.
9. Explain with neat sketches the Bevis-Gibson flash light dynamometer.

OBJECTIVE TYPE QUESTIONS
1. The brakes commonly used in railway trains is

(a) shoe brake (b) band brake
(c) band and block brake (d) internal expanding brake

2. The brake commonly used in motor cars is
(a) shoe brake (b) band brake
(c) band and block brake (d) internal
expanding brake

3. In a differential band brake, as shown in Fig. 19.45, the length
OA is greater than OB. In order to apply the brake, the force P
at C should
(a)  be zero (b) act in upward direction
(c) act in downward direction

4. For the brake to be self locking, the force P at C as shown in
Fig. 19.45, should

(a) be zero

(b)  act in upward direction

(c) act in downward direction

5. When brakes are applied to all the four wheels of a moving car, the distance travelled by the car before
it is brought to rest, will be

 (a) maximum  (b) minimum

6. Which of the following is an absorption type dynamometer ?

(a) prony brake dynamometer (b) rope brake dynamometer

(c) epicyclic-train dynamometer (d) torsion dynamometer

ANSWERS
1. (a) 2. (d) 3. (c) 4. (a) 5. (b) 6. (a), (b)

Fig. 19.45
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